Modelling peeling- and pressure-driven propagation of arterial dissection
نویسندگان
چکیده
An arterial dissection is a longitudinal tear in the vessel wall, which can create a false lumen for blood flow and may propagate quickly, leading to death. We employ a computational model for a dissection using the extended finite element method with a cohesive traction-separation law for the tear faces. The arterial wall is described by the anisotropic hyperelastic Holzapfel–Gasser–Ogden material model that accounts for collagen fibres and ground matrix, while the evolution of damage is governed by a linear cohesive traction-separation law. We simulate propagation in both peeling and pressure-loading tests. For peeling tests, we consider strips and discs cut from the arterial wall. Propagation is found to occur preferentially along the material axes with the greatest stiffness, which are determined by the fibre orientation. In the case of pressure-driven propagation, we examine a cylindrical model, with an initial tear in the shape of an arc. Long and shallow dissections lead to buckling of the inner wall between the true lumen and the dissection. The various buckling configurations closely match those seen in clinical CT scans. Our results also indicate that a deeper tear is more likely to propagate.
منابع مشابه
Propagation of dissection in a residually-stressed artery model
This paper studies dissection propagation subject to internal pressure in a residually-stressed two-layer arterial model. The artery is assumed to be infinitely long, and the resultant plane strain problem is solved using the extended finite element method. The arterial layers are modelled using the anisotropic hyperelastic Holzapfel-Gasser-Ogden model, and the tissue damage due to tear propaga...
متن کاملModelling of tear propagation and arrest in fibre-reinforced soft tissue subject to internal pressure
Prediction of soft tissue failure may yield a better understanding of the pathogenesis of arterial dissection and help to advance diagnostic and therapeutic strategies for treatment of this and other diseases and injuries involving the tearing of soft tissue, such as aortic dissection. In this paper, we present computational models of tear propagation in fibre-reinforced soft tissue that underg...
متن کاملRate-dependent elastic hysteresis during the peeling of pressure sensitive adhesives.
The modelling of the adherence energy during peeling of Pressure Sensitive Adhesives (PSA) has received much attention since the 1950's, uncovering several factors that aim at explaining their high adherence on most substrates, such as the softness and strong viscoelastic behaviour of the adhesive, the low thickness of the adhesive layer and its confinement by a rigid backing. The more recent i...
متن کاملViscous control of peeling an elastic sheet by bending and pulling.
Propagation of a viscous fluid beneath an elastic sheet is controlled by local dynamics at the peeling front, in close analogy with the capillary-driven spreading of drops over a precursor film. Here we identify propagation laws for a generic elastic peeling problem in the distinct limits of peeling by bending and peeling by pulling, and apply our results to the radial spread of a fluid blister...
متن کاملComputational tools for clinical support: a multi-scale compliant model for haemodynamic simulations in an aortic dissection based on multi-modal imaging data
Aortic dissection (AD) is a vascular condition with high morbidity and mortality rates. Computational fluid dynamics (CFD) can provide insight into the progression of AD and aid clinical decisions; however, oversimplified modelling assumptions and high computational cost compromise the accuracy of the information and impede clinical translation. To overcome these limitations, a patient-specific...
متن کامل